Multi-Objective Simultaneous Optimistic Optimization
نویسندگان
چکیده
منابع مشابه
Stochastic Simultaneous Optimistic Optimization
We study the problem of global maximization of a function f given a finite number of evaluations perturbed by noise. We consider a very weak assumption on the function, namely that it is locally smooth (in some precise sense) with respect to some semi-metric, around one of its global maxima. Compared to previous works on bandits in general spaces (Kleinberg et al., 2008; Bubeck et al., 2011a) o...
متن کاملBayesian Multi-Scale Optimistic Optimization
where σ T (x) = κ(x,x) − k1:T (x)K−1k1:T (x) and this bound is tight. Moreover, σ T (x) is the posterior predictive variance of a Gaussian process with the same kernel. Lemma 3 (Adapted from Proposition 1 of de Freitas et al. (2012)). Let κ : R × R → R be a kernel that is twice differentiable along the diagonal {(x,x) |x ∈ RD}, with L defined as in Lemma 1.1, and f be an element of the RKHS wit...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Directed Multi-Objective Optimization
While evolutionary computing inspired approaches to multi-objective optimization have many advantages over conventional approaches; they generally do not explicitly exploit directional/gradient information. This can be inefficient if the underlying objectives are reasonably smooth, and this may limit the application of such approaches to real-world problems. This paper develops a local framewor...
متن کاملSimultaneous Feature Selection and Parameter Optimization Using Multi-objective Optimization for Sentiment Analysis
In this paper, we propose a method of feature selection and parameter optimization for sentiment analysis in Twitter messages. Appropriate features and parameter combinations have significant effect to the performance of any classifier. As base learning algorithms we make use of Random Forest and Support Vector Machines. We perform sentiment analysis at the message level, and use the platform o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2018
ISSN: 0020-0255
DOI: 10.1016/j.ins.2017.09.066